These are the standard constraints that need to be supported by FlatZinc solvers (or redefined in the redefinitions.mzn file).
Constrains \( {\bf r} \leftrightarrow \bigwedge_i {\bf as}[i]\)
Constrains as[b] = c
Constrains \( {\bf r} \leftrightarrow \bigvee_i {\bf as}[i]\)
Constrains \( {\bf r} \leftrightarrow \oplus_i\ {\bf as}[i]\)
Constrains as[b] = c
Constrains m to be the maximum value of the (non-empty) array x
Constrains m to be the minimum value of the (non-empty) array x
Constrains as[b] = c
Constrains m to be the maximum value of the (non-empty) array x
Constrains m to be the minimum value of the (non-empty) array x
Constrains as[b] = c
Constrains as[b] = c
Constrains as[b] = c
Constrains as[b] = c
Constrains as[b] = c
Constrains b ∈ {0,1} and a ↔ b=1
Constrains r ↔ a ∧ b
Constrains \( \bigvee_i {\bf as}[i] \land \bigvee_j \lnot {\bf bs}[j] \)
Constrains a = b
Constrains r ↔ (a = b)
Constrains a ≤ b
Constrains r ↔ (a ≤ b)
Constrains \( {\bf c} = \sum_i {\bf as}[i]*{\bf bs}[i] \)
Constrains \( {\bf c} \leq \sum_i {\bf as}[i]*{\bf bs}[i] \)
Constrains a < b
Constrains r ↔ (a < b)
Constrains a ≠ b
Constrains r ↔ a ∨ b
Constrains r ↔ a ⊕ b
Constrains a ⊕ b
Constrains b to be the absolute value of a
Constrains b = acos(a)
Constrains b = acosh(a)
Constrains b = asin(a)
Constrains b = asinh(a)
Constrains b = atan(a)
Constrains b = atanh(a)
Constrains b = cos(a)
Constrains b = cosh(a)
Constrains a = b
Constrains r ↔ (a = b)
Constrains b = exp(a)
Constrains a ≤ b
Constrains r ↔ (a ≤ b)
Constrains \( {\bf c} = \sum_i {\bf as}[i]*{\bf bs}[i] \)
Constrains \( {\bf r} \leftrightarrow ({\bf c} = \sum_i {\bf as}[i]*{\bf bs}[i]) \)
Constrains \( {\bf c} \leq \sum_i {\bf as}[i]*{\bf bs}[i] \)
Constrains \( {\bf r} \leftrightarrow ({\bf c} \leq \sum_i {\bf as}[i]*{\bf bs}[i]) \)
Constrains \( {\bf c} < \sum_i {\bf as}[i]*{\bf bs}[i] \)
Constrains \( {\bf r} \leftrightarrow ({\bf c} < \sum_i {\bf as}[i]*{\bf bs}[i]) \)
Constrains \( {\bf c} \neq \sum_i {\bf as}[i]*{\bf bs}[i] \)
Constrains \( {\bf r} \leftrightarrow ({\bf c} \neq \sum_i {\bf as}[i]*{\bf bs}[i]) \)
Constrains b = ln(a)
Constrains b = log10(a)
Constrains b = log2(a)
Constrains a < b
Constrains r ↔ (a < b)
Constrains max(a, b) = c
Constrains min(a, b) = c
Constrains a ≠ b
Constrains r ↔ (a ≠ b)
Constrains a + b = c
Constrains z = \({\bf x} ^ {{\bf y}}\)
Constrains b = sin(a)
Constrains b = sinh(a)
Constrains \({\bf b} = \sqrt{{\bf a}}\)
Constrains b = tan(a)
Constrains b = tanh(a)
Constrains a * b = c
Constrains y=x
Constrains b to be the absolute value of a
Constrains a / b = c
Constrains a to be equal to b
Constrains (a=b) ↔ r
Constrains a to be less than or equal to b
Constrains (a ≤ b) ↔ r
Constrains \( {\bf c} = \sum_i {\bf as}[i]*{\bf bs}[i] \)
Constrains \( {\bf r} \leftrightarrow ({\bf c} = \sum_i {\bf as}[i]*{\bf bs}[i]) \)
Constrains Σ as[i]*bs[i] ≤ c
Constrains r ↔ (Σ as[i]*bs[i] ≤ c)
Constrains \( {\bf c} \neq \sum_i {\bf as}[i]*{\bf bs}[i] \)
Constrains \( {\bf r} \leftrightarrow ({\bf c} \neq \sum_i {\bf as}[i]*{\bf bs}[i]) \)
Constrains a < b
Constrains r ↔ (a < b)
Constrains max(a, b) = c
Constrains min(a, b) = c
Constrains a % b = c
Constrains a ≠ b
r ↔ (a ≠ b)
Constrains a + b = c
Constrains z = \({\bf x} ^ {{\bf y}}\)
Constrains a * b = c
Constrains x = |S|
Constrains r = x − y
Constrains x = y
Constrains r ↔ (x = y)
Constrains x ∈ S
Constrains x ∈ S
Constrains r ↔ (x ∈ S)
Constrains r ↔ (x ∈ S)
Constrains r = x ∩ y
Constrains x ≤ y (lexicographic order)
Constrains x < y (lexicographic order)
Constrains x ≠ y
Constrains r ↔ (x ≠ y)
Constrains x ⊆ y
Constrains r ↔ (x ⊆ y)
Constrains r to be the symmetric difference of x and y
Constrains r = x ∪ y